On the sum of t and Gaussian random variables

نویسنده

  • Guy P. Nason
چکیده

This article derives the probability density function (pdf) of the sum of a normal random variable and a (sphered) Student’s-t distribution on odd degrees of freedom greater than or equal to three. Apart from its intrinsic interest applications of this result include Bayesian wavelet shrinkage, Bayesian posterior density derivations, calculations in the theoretical analysis of projection indices and computation of certain moments. Some key words: sum of Gaussian and Student’s t, characteristic function, wavelet shrinkage, error function.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Communication Technology Laboratory Fundamentals of Wireless Communications Homework 2 Solutions Problem 1 Linear Filters and Gaussian Noise

1. By using the sampling theorem to expand N (t − τ, ω) and h(τ) with respect to τ we obtain: Z(t, ω) = τ k∈Z h(kT) sinc π τ − kT T k∈Z N (t − kT, ω) sinc π τ − kT T dτ = T k∈Z h(kT)N (t − kT, ω) where we used orthogonality of the set of functions {sinc (π(τ − kT)/T)} k∈Z. 2. Since N (τ) is a complex Gaussian random process, for each finite set of epochs t 1 , ..., t K , the random variables {N...

متن کامل

Complete convergence of moving-average processes under negative dependence sub-Gaussian assumptions

The complete convergence is investigated for moving-average processes of doubly infinite sequence of negative dependence sub-gaussian random variables with zero means, finite variances and absolutely summable coefficients. As a corollary, the rate of complete convergence is obtained under some suitable conditions on the coefficients.

متن کامل

Parameter Estimation in Spatial Generalized Linear Mixed Models with Skew Gaussian Random Effects using Laplace Approximation

 Spatial generalized linear mixed models are used commonly for modelling non-Gaussian discrete spatial responses. We present an algorithm for parameter estimation of the models using Laplace approximation of likelihood function. In these models, the spatial correlation structure of data is carried out by random effects or latent variables. In most spatial analysis, it is assumed that rando...

متن کامل

A Recursive Approximation Approach of non-iid Lognormal Random Variables Summation in Cellular Systems

Co-channel interference is a major factor in limiting the capacity and link quality in cellular communications. As the co-channel interference is modeled by lognormal distribution, sum of the co-channel interferences of neighboring cells is represented by the sum of lognormal Random Variables (RVs) which has no closed-form expression. Assuming independent, identically distributed (iid) RVs, the...

متن کامل

Strong Convergence of Weighted Sums for Negatively Orthant Dependent Random Variables

We discuss in this paper the strong convergence for weighted sums of negatively orthant dependent (NOD) random variables by generalized Gaussian techniques. As a corollary, a Cesaro law of large numbers of i.i.d. random variables is extended in NOD setting by generalized Gaussian techniques.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005